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Discrete duality finite volume schemes for two-dimensional
drift-diffusion and energy-transport models
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SUMMARY

The drift-diffusion and the energy-transport models appear in the modelling of semiconductor devices.
The main difficulty arising in the approximation of the energy transport model by finite volume schemes is
the discretization of the Joule heating term in the equation on the density of energy. Following some recent
ideas by Domelevo and Omnès for the discretization of the Laplace equation on almost general meshes,
we construct a finite volume approximation of the 2-D drift-diffusion and energy transport models. These
schemes still hold on almost general meshes. Finally, we present numerical simulations of semiconductor
devices. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In the modelling of semiconductor devices, two main classes of classical models can be
distinguished: kinetic models and fluid dynamical models (for the presentation of the hierarchy of
models, see for instance [1–3]). The drift-diffusion and the energy-transport models belong to the
class of fluid dynamical models. Since they are coupled systems of parabolic and elliptic equations,
they are well adapted for numerical simulations and particularly by finite volume methods.

1.1. The drift-diffusion model

The simplest model is the drift-diffusion system. It consists of two continuity equations for the
density of charges (electrons and holes), coupled with the Poisson equation for the electrostatic

∗Correspondence to: C. Chainais-Hillairet, Laboratoire de Mathématiques, UMR 6620, 24, avenue des Landais, 63177
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potential. Let �⊂ R2 be an open and bounded polygonal domain describing the geometry of the
semiconductor device, we set � = ��, the boundary of the domain, and � the unit outwards normal
to �. If we set all physical constants to 1 for the sake of simplicity, the drift-diffusion system
writes

�t N − div(JN ) = 0 in �× ]0, �[ with JN = ∇r(N ) − N∇V (1)

�t P − div(JP) = 0 in � × ]0, �[ with JP =∇r(P) + P∇V (2)

�V = N − P − C in � × ]0, �[ (3)

where C(x) is the prescribed doping profile of the device and the nonlinear function r denotes the
pressure of electrons and holes which behave like a gas (in the applications, r(s) = s�, with �= 5

3 ).
Equations (1)–(3) are supplemented with initial conditions (N 0, P0) and boundary conditions.
The physically motivated boundary conditions are mixed Dirichlet–Neumann boundary conditions:
Dirichlet boundary conditions on the ohmic contacts, homogeneous Neumann boundary conditions
on the insulating boundary segments. Therefore, the boundary � splits into two parts: �= �D ∪�N

and the boundary conditions are

N = N , P = P, V = V on �D× ]0, �[
∇r(N ) · � = ∇r(P) · �= ∇V · � = 0 on �N × ]0, �[

A lot of numerical algorithms have already been proposed for solving this system. A review
of exponentially fitted difference or finite element methods is presented in [4]: it refers to the
first work by Scharfetter and Gummel [5] on exponentially fitted difference schemes in 1-D and
also to more recent papers like [6–9]. In [10], we studied finite volume discretization for the
multidimensional nonlinear drift-diffusion system. Using the techniques developed by Eymard
et al. in [11], we proved the convergence of the finite volume scheme and then the existence
of solutions to the nonlinear drift-diffusion system. Numerical simulations of the drift-diffusion
system give physically relevant results for micrometer size devices.

1.2. The energy-transport model

However, the simple drift-diffusion system (1)–(3) is not accurate enough for sub-micron device
modelling, owing to temperature effects and hot electrons. In this case, it is interesting to work
with an energy transport model which takes into account the temperature effects and remains
simpler than hydrodynamic equations or semiconductor Boltzmann equations because it can still
be written in a drift-diffusion form. The energy transport models for semiconductor devices can
be derived either from hydrodynamic models by neglecting certain convection terms [12] or from
the Boltzmann equation by means of the Hilbert expansion method [13]. Here, we restrict our
attention to the transient version of the Chen model derived in [14]. It consists of continuity
equations for density of electrons N and density of energy U coupled with a Poisson equation for
the electrostatic potential V . In the scaled variables, the system writes

�t N − div(JN ) = 0 in �× ]0, �[ (4)
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�tU − div(JU ) =−JN · ∇V + W (N ,U ) in �× ]0, �[ (5)

�2�V = N − C in �× ]0, �[ (6)

where JN and JU are the current densities of charge and energy, JN · ∇V is the Joule heating
term, W (N ,U ) is the energy relaxation term, �2 is the Debye length and C(x) is the prescribed
doping profile of the device. The current densities are defined by

JN =∇N − N
∇V

T
, JU = ∇U −U

∇V

T

In the Chen model, the densities N and U are linked with the temperature T by the relation

U = 3
2NT

and the energy relaxation term is given by

W (N ,U ) = c1N − c2U

Equations (4)–(6) are supplemented with initial data N 0,U 0 and mixed Dirichlet–Neumann bound-
ary conditions

N = N , U =U , V = V on �D × ]0, �[
JN · � = JU · � =∇V · � = 0 on �N × ]0, �[

The discretization of the energy-transport equations has already been studied in many papers:
extensions of Scharfetter–Gummel schemes in [15], ENO schemes in [16], finite element schemes
in [17, 18], high-order compact difference schemes in [19]. In [20], we proposed a finite volume
scheme for the 1-D energy-transport system.

1.3. Goal of the paper

The principle of finite volume schemes lies on integration of conservation laws on control volumes
(cells of the mesh) and then on a finite difference discretization of fluxes through the edges of the
control volumes (edges of the mesh). By applying this method to Equation (4) or (6), we define
approximations of JN and ∇V only on the edges and only along the normal to the edges. This
method does not provide any approximation of JN and ∇V along the edges. Then, there is some
lack of information and the discretization of the Joule heating term JN · ∇V (or more precisely∫
K JN · ∇V for a control volume K ) is not straightforward.
In this paper, we propose a method which provides the reconstruction of discrete gradients and

discrete currents on the whole domain and then a straightforward discretization of the Joule heating
term. Therefore, we follow the ideas of Domelevo and Omnès [21] for the discretization of the
Laplace equation and we adapt them to convection–diffusion equations. A reconstruction of the
gradients proposed by Coudière et al. [22] is used and the principle of the scheme lies on integration
of the equations on primal and dual cells as done by Hermeline [23, 24]. This method holds for
the drift-diffusion and the energy-transport systems. It works on almost all general meshes.

Section 2 is devoted to the definition of discrete gradients and currents. It leads to a new scheme
for the drift-diffusion and energy-transport models on almost all general meshes. In Section 3,
numerical simulations of the drift-diffusion system (PN junction diode and PNP transistor) and
the Chen energy-transport model (2-D ballistic diode) are shown.
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2. CONSTRUCTION OF THE FINITE VOLUME SCHEME

2.1. Motivation and principle

The main works on finite volume schemes for elliptic or parabolic equations are based on a
restrictive assumption on the mesh. Indeed, an admissible mesh of a domain � is given by a
family T of control volumes, a family E of edges and a family (xK )K∈T of points such that the
straight line between two neighbouring centres of cells (xK , xL) is orthogonal to the considered
edge (see Definition 5.1 in [11]). Under this hypothesis, the following two points approximation
of the flux ∇V through the interface �K L (K and L are two neighbouring cells), whose normal
and measure are, respectively, denoted �K L and m(�K L), turns natural:∫

�K L

∇V · �K L ≈ m(�K L)
VL − VK

d(xK , xL)

In the same way, with an upwind discretization of the convective term, we have the following
approximation for a current density like JN = ∇N − (N/T )∇V :

∫
�K L

∇ JN · �K L ≈ m(�K L)
NL − NK

d(xK , xL)
− m(�K L)

VL − VK

d(xK , xL)
·

⎧⎪⎪⎨
⎪⎪⎩

NK

TK
if VL�VK

NL

TL
if VL�VK

Therefore, the usual two point discretization of the gradient and the current density provide an
approximation of the gradient ∇V and JN only in the direction �K L orthogonal to the edge �K L ,
which seems not sufficient for the discretization of the Joule heating term JN · ∇V .

In order to get a reconstruction of the gradients and the current densities, we will adapt the ideas
developed by Domelevo and Omnès [21]. In this paper, the authors study a new finite volume
method for the Laplace equation. This method lies on the reconstruction of approximate gradients
using unknowns at the centres and the nodes of the mesh as proposed by Coudière et al. in [22]. The
scheme comes from the integration of the Laplace equation on primal and dual control volumes.
It provides a linear system with a symmetric positive definite matrix. If the mesh is admissible
in the sense of Definition 5.1 in [11], the scheme splits into two separate schemes: the classical
cell-centred scheme and the classical vertex-centred scheme.

The main advantages of this method are that it can be applied on almost all general meshes
and that it provides a complete reconstruction of the gradients. Convergence of the scheme for the
Laplace equation is established in [21]. Its main drawback is the size of the linear systems: indeed,
the number of discrete unknowns is the sum of the number of cells and the number of nodes.

2.2. Mesh

In order to construct the scheme, we first have to describe the mesh of the domain. As in [21],
three simultaneous meshes for the same domain are taken under consideration:

1. the primal mesh is for instance a triangulation of �;
2. the dual mesh is obtained by connecting all the centres of gravity of the primal cells and

midpoints of the boundary edges;
3. the diamond mesh whose nodes are the nodes and the centres of the primal mesh.
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primal mesh

dual mesh

diamond mesh

Figure 1. Presentation of the meshes.

The three meshes are presented in Figure 1. The notations are the following:

• T is a family of polygonal control volumes such that �= ⋃
K∈T K , it defines the primal

mesh.
• P is the family of nodes of the primal mesh, which can be split into P=Pint ∪PD ∪PN

where we distinguish the interior points, Pint, the points belonging to �D, PD, and the points
belonging to �N, PN.

• E is the family of edges of the primal mesh, which can be split into E=Eint ∪ED ∪EN

where we distinguish the interior edges, Eint, the edges on �D, ED, and the edges on �N,
EN .

• For any P ∈ P, we define KP the cell obtained by connecting the centres of the primal cells
with vertex P and the midpoints of the boundary edges if P ∈ �. Then, we obtain a dual
mesh of � since � = ⋃

P∈P KP .
• The set of the edges of the dual mesh is denoted Ẽ.
• For all � ∈E, we define D� the diamond obtained by connecting the vertices of � and the
centres of the neighbouring cells (if � is on the boundary, the diamond reduces to a triangle).
Thus, we obtain a third mesh: the diamond mesh of � since �= ⋃

�∈E D�.
• For all K ∈T, xK is the centre of gravity of K . For � ∈E, if � ⊂ �K , the unit normal to �
outwards K is denoted �K ,�.

• For all P ∈P and �̃∈Ẽ, if �̃∈ �KP , the unit normal to �̃ outwards KP is denoted �KP ,�̃.

2.3. Reconstruction of the gradient

Let us now recall the definition of the discrete gradient ∇d, introduced in [21]. This operator is
a priori defined for any vector � of known values at the centres and the nodes of the mesh and the
midpoints of the boundary edges and gives a discrete gradient ∇d� which is piecewise constant
on each diamond cell:

∇d :�∈ R|T|+|P|+|ED|+|EN| → ∇d�∈ (R|E|)2

Here, we adapt the definition of ∇d in order to take into account the boundary conditions.
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Figure 2. Notations for the reconstruction of the gradient.

Let us consider an edge of the primal mesh � ∈E. If � ∈Eint, we choose an orientation for �
such that its vertices are denoted S and N and the centres of the neighbouring cells W and E . The
boundary � is oriented anticlockwise, such that, if � ∈ED ∪EN, the point W is inside the domain
and the point E is on the boundary (we set E = (N + S)/2), see Figure 2.

The diamond D� is obtained by connecting the points N ,W, S, E (if � ∈ED ∪EN, D� is
confined to the triangle NWS). We set:

• mSN the unit normal to [SN ] oriented from W to E ;
• mWE the unit normal to [WE] oriented from S to N ;
• SN the length of [SN ];
• WE the length of [WE];
• A� the area of D�.

Then, given �N , �S , �E , �W , the values of � at the points N , S, E , W , ∇d� is defined on
D� by

∇d�|D� = 1

2A�
((�E − �W )SNmSN + (�N − �S)WEmWE) ∀� ∈E∪ED (7)

In the sequel, some values of � will be unknowns of the scheme and some others will be given
by the boundary conditions. In particular, if � ∈EN, the boundary condition ∇d�|D� · mSN = 0
yields

∇d�|D� = 1

2A�
(�N − �S)WE(mWE − mSN · mWEmSN) ∀� ∈EN (8)

Furthermore, it will happen that one or the two vertices of an edge � belong to �D. In this case,
the corresponding values �N or �S are prescribed by the boundary conditions:

�N = �(N ) if N ∈Pint, �S = �(S) if S ∈ Pint (9)
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If N and S are both in Pint, then we define �E by

�E = �(S) + �(N )

2
∀� ∈ED (10)

Finally, the operator ∇d is defined from R|T|+|Pint|+|PN| to (R|E|)2 by (7)–(10).

2.4. Reconstruction of the current densities

As for the gradient, we now define some reconstruction of the current densities. The current
densities in the drift-diffusion system write JN =∇r(N ) − N∇V and JP =∇r(P) + P∇V and
in the energy-transport system, they write JN = ∇N − (N/T )∇V and JU = ∇U − (U/T )∇V . In
both cases, the current densities are made of a diffusion part and a convection part. In order to
have some general definition for the approximate current densities, we use a general compact form
for the current density:

J(�, �, �) =∇� − �∇�

Thus, for the drift-diffusion system, we have

JN =J(r(N ), N , V ) and JP =J(r(P),−P, V )

and for the energy-transport system, we have

JN =J

(
N ,

N

T
, V

)
and JU =J

(
U,

U

T
, V

)

As the discrete gradient ∇d, the discrete current density Jd is a discrete operator:

Jd : (�,�,�) ∈ (R|T|+|Pint|+|PN|)3 →Jd(�, �, �) ∈ (R|E|)2

It can be defined by its scalar products Jd(�, �, �)|D� · mSN and Jd(�, �, �)|D� · mWE. These
scalar products are the relevant quantities on each diamond D� for the construction of the scheme.
Indeed, the scheme will be obtained after integration of the constitutive equations on the primal
and the dual cells. But in the diamond D�, the diagonal SN is an edge of the primal mesh, while
the diagonal WE is an edge of the dual mesh (see Figure 2 for the notations). Therefore, in the
construction of the scheme, we need to approximate

∫
SN J · mSN and

∫
WE J · mWE.

AsJ contains a convective part, it is classical to use an upwind discretization for this convective
part �∇�. Therefore, we just consider that for the SN edge the upstream point is W and the
downstream point is E , while for the WE edge the upstream point is S and the downstream point
is N . It leads to the following definition:

Jd(�,�, �)|D� · mSN = ∇d� · mSN − (∇d� · mSN)+�W − (∇d� · mSN)−�E ∀� ∈ Eint ∪ED

= 0 ∀�∈EN

Jd(�,�, �)|D� · mWE =∇d� · mWE − (∇d� · mWE)+�S − (∇d� · mWE)−�N ∀� ∈E

where x+ = max(x, 0) and x− = min(x, 0).
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This is a compact definition for the approximate current densities. Let us just note that, in
practice, the approximate current density Jd(�, �, �) can be expressed on each diamond D� as
a combination of the values of �, � and � at the four vertices of the diamond (N , S, W , E), for
instance in the non-orthogonal basis mSN , mWE.

2.5. Numerical scheme for the energy-transport model

We just present the numerical scheme for the energy-transport model. Indeed, the scheme is exactly
the same for the drift-diffusion system with the corresponding current densities and without any
source term in the conservation equations.

Let �t be the time step and tn = n�t . In general for finite volume methods, the unknowns are
localized either at the centres or at the vertices of the control volumes. Here, the unknowns are
the values of N ,U, V at time tn at the centres of the mesh:

Nn
K , Un

K , V n
K ∀K ∈T ∀n�0

and also at the nodes of the mesh

Nn
P , Un

P , V n
P ∀P ∈P ∀n�0

and the unknown vectors at time tn are denoted by

Nn = ((Nn
K )K∈T, (Nn

P)P∈P), Un = ((Un
K )K∈T, (Un

P)P∈P), V n = ((V n
K )K∈T, (V n

P)P∈P)

First, we discretize initial and boundary data and the doping profile

N 0
K = 1

m(K )

∫
K
N 0, U 0

K = 1

m(K )

∫
K
U 0 ∀K ∈T

N 0
P = 1

m(KP)

∫
KP

N 0, U 0
P = 1

m(KP)

∫
KP

U 0 ∀P ∈Pint ∪PN

Nn
P = N (P, tn), Un

P =U (P, tn), V n
P = V (P, tn) ∀P ∈PD ∀n�0

CK = 1

m(K )

∫
K
C ∀K ∈T, CP = 1

m(KP)

∫
KP

C ∀P ∈P

The scheme on V writes

∑
�⊂�K

∫
�
∇dV n · �K ,� =m(K )(Nn

K − CK ) ∀K ∈ T (11)

∑
�̃⊂�KP

∫
�̃
∇dV n · �KP ,�̃ =m(KP)(Nn

P − CP) ∀P ∈Pint ∪PN (12)
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For N , the scheme is Euler explicit in time:

m(K )
Nn+1
K − Nn

K

�t
− ∑

�⊂�K

∫
�
Jd

(
Nn,

Nn

T n
, V n

)
· �K ,� = 0 ∀K ∈T (13)

m(KP)
Nn+1
P − Nn

P

�t
− ∑

�̃⊂�KP

∫
�̃
Jd

(
Nn,

Nn

T n
, V n

)
· �KP ,�̃ = 0 ∀P ∈Pint ∪PN (14)

For U , the current densities and the heating Joule term are discretized in an explicit way while
the relaxation term is discretized in an implicit way:

m(K )
Un+1

K −Un
K

�t
− ∑

�⊂�K

∫
�
Jd(Un,

Un

T n
, V n) · �K ,�

=−
∫
K
Jd(Un,

Un

T n
, V n) · ∇dV n + m(K )(c1N

n+1
K − c2U

n+1
K ) ∀K ∈T (15)

m(KP)
Un+1

P −Un
P

�t
− ∑

�̃⊂�KP

∫
�̃
Jd

(
Un,

Un

T n
, V n

)
· �KP ,�̃

=−
∫
KP

Jd
(
Un,

Un

T n
, V n

)
· ∇dV n+m(KP)(c1N

n+1
P −c2U

n+1
P ) ∀P ∈Pint ∪PN (16)

Equations (11), (13), (15) derive from integration of Equations (4)–(6) on the primal cells;
Equations (12), (14), (16) come from integration on the dual cells.

At each time step, approximate densities of charge and energy Nn and Un are computed
explicitly and then the approximate potential V n is obtained after resolution of a linear system.
As established in [21], the matrix of this system is symmetric positive definite. Its size is the
sum of the number of cells and the number of ‘non-Dirichlet’ points. At each time step, we also
reconstruct the approximate gradient of V and the approximate current densities of charge and
energy.

3. NUMERICAL EXPERIMENTS

In this section, we present numerical results obtained with our scheme.
Sections 3.1 and 3.2 are devoted to the simulation of a PN-diode and a PNP-transistor modelized

by the drift-diffusion system. For this system, we proved in [10] the convergence of a ‘classical’
finite volume scheme under the assumption of admissibility of the mesh. The advantage of the
scheme proposed here is that it works on more general meshes. The physical data in the test cases
are given by Jüngel and Pietra [9].

In Section 3.3, we present the simulation of a 2-D-ballistic diode modelized by the Chen
energy-transport model. The physical data are given by Holst et al. [18].
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P-region

N-region

x

y
DΓ

DΓ

Figure 3. Geometry of the PN-junction diode.

Table I. Physical parameters for the silicon.

Parameter Physical meaning Numerical value

q elementary charge 10−19 A s
� permittivity constant 10−12 A sV−1 cm−1

ni intrinsic number 1010 cm−3

�0 low field mobility 1.5× 103 cm2 V−1 s−1

UT thermal voltage at T0 = 300 K 0.0259 V
�0 energy relaxation time 0.4× 10−12 s

3.1. Simulation of a PN-diode

The first numerical test is devoted to the simulation of a silicon PN-diode. The geometry of the
device is shown in Figure 3. It is assumed to be a square of side l = 10−3 cm. The pressure function
has the form r(s) = s� with � = 5

3 . The numerical values of the physical parameters are given in
Table I.

For a doping profile of size ‖C‖∞, we set

	 = �

� − 1
, 
=

(
ni

‖C‖∞

)�−1

, U0 = 1

2	(1 − 
)

The Debye length �2 is given by

�2 = �VbU0

ql2‖C‖∞
where Vb is the built-in potential of the device. When it is scaled by the unit scaling (see [4]), the
scaled drift-diffusion system writes

�t N −U0 div(∇(N �) − N∇V ) = 0 in ]0, 1[2× ]0, T [ (17)
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Figure 4. Distorted mesh for the PN-diode.

�t P −U0 div(∇(P�) + P∇V ) = 0 in ]0, 1[2× ]0, T [ (18)

�2�V (x, t) = N − P − C in ]0, 1[2× ]0, T [ (19)

with a piecewise constant dimensionless doping profile

C = −1 in the P-region

C = 1 in the N -region

and the boundary conditions

N = 1, P = 0 at the contact of an N -region

N = 0, P = 1 at the contact of a P-region

The boundary potential V will be given in each case as the superposition of the equilibrium
potential and an applied voltage U :

V =−	(1 − 
) at the contact of the P-region

V = 	(1 − 
) − U

VbU0
at the contact of the N -region

3.1.1. A reverse biased diode. We first consider the case of a reverse biased diode. The moderate
doping profile satisfies ‖C‖∞ = 1015 cm−3 and the built-in potential is Vb = 0.5756V. We present
in Figure 5 the results obtained for a strongly reverse biased diode with U = −2.0 V, when the
steady state is reached. We compute the scaled N , P and V by two different methods: with the
classical scheme proposed in [10] on an admissible mesh made of 947 triangles and 510 nodes and
with the new scheme on the distorted mesh made of 1000 triangles and 537 nodes presented in
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Figure 5. Reverse biased diode: U =−2.0 V, ‖C‖∞ = 1015 cm−3. Results obtained with the ‘classical’
scheme (on the left) and with the new scheme on the distorted mesh (on the right).
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Figure 6. Case 1. Time step (on the left) and CPU time (on the right) for both schemes.

Figure 4. In this case, vacuum sets occur for the electron and hole densities; therefore, no current
flows through the diode.

We obtain the same profiles with the two schemes. The results also allow for comparison with
the results in [9] (steady-state case).

Both schemes are explicit in time. We present in Figure 6 the time step authorized for the
computations and the time of computation required for the numerical solution of the first test case
for both schemes (the classical one and the new one called ‘DBVF’). We note that the time steps
authorized are bigger for the new scheme than for the classical one. Therefore, though the linear
systems inverted at each time step are bigger with the new scheme, the times of computations
remain much smaller.

3.1.2. A forward biased diode. We now consider the case of a forward biased diode. The geometry
of the device is shown in Figure 3. The computations are carried out with a doping profile satisfying
‖C‖∞ = 1016 cm−3, a built-in potential Vb = 0.6907 V and an applied voltage U = 0.8 V. We still
compute N , P and V at the steady state by two different methods: with the classical scheme
proposed in [10] on an admissible mesh made of 947 triangles and 510 nodes and with the new
scheme on the distorted mesh made of 1000 triangles and 537 nodes presented in Figure 4. The
results are given in Figure 7. In this case, we see that the vacuum sets for N and P are trivial and,
therefore, current flows through the diode.

Figure 8 presents the time step authorized for the computations and the time required for the
computation of the numerical solution in the second test case. We note that the time steps are
not exactly the same as for the first test case. But the behaviour of the time step and the central
processing unit (CPU) time versus the size of the mesh remain the same: the times of computation
are smaller with the new scheme.

3.2. Simulation of the PNP-transistor

Now, we apply the numerical simulation of the scaled drift-diffusion system (17)–(19) to a PNP-
transistor. The geometry of the device is shown in Figure 9. The moderate doping profile satisfies
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Figure 7. Forward biased diode: U = 0.8 V, ‖C‖∞ = 1016 cm−3. Results obtained with the ‘classical’
scheme (on the left) and with the new scheme on the distorted mesh (on the right).
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Figure 8. Case 2. Time step (on the left) and CPU time (on the right) for both schemes.

Figure 9. Geometry of the PNP-transistor.

‖C‖∞ = 1015 cm−3, the built-in potential is Vb = 0.5756 V and the boundary conditions for the
electrostatic potential are

V = 0 at the emitter

V = UB

VbU0
at the base

V = UC

VbU0
at the collector

where UB =−1.0 V is the base potential and UC =−2.0 V is the collector potential.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2009; 59:239–257
DOI: 10.1002/fld



254 C. CHAINAIS-HILLAIRET

Figure 10. PNP-transistor: carrier densities, electrostatic potential and total current density.

The mesh of the domain contains 933 triangles and 504 nodes. We still compute the carrier
densities and the electrostatic potential at the steady state. We also compute the total current density
inside the transistor. The results are depicted Figure 10.

3.3. Simulation of the 2-D ballistic diode

We now present the simulation of a 2-D ballistic n+nn+ silicon diode which is uniform in one
space dimension. The numerical results can be compared to the results in [17, 19] in 1-D and in
[18] in 2-D.

The semiconductor domain is �= (0, lx ) × (0, ly) where lx = 0.6 �m and ly = 0.2 �m and the
length of the channel equals 0.4 �m. It is presented in Figure 11. The numerical values of the
physical parameters are given in Table I.

The doping profile is

C =Cm = 5× 1017 cm−3 in the n+ region

C =Cn = 2× 1015 cm−3 in the n region (channel)
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Figure 11. Geometry of the ballistic diode.
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Figure 12. 2-D ballistic diode: temperature and electrostatic potential.

On the ohmic contacts, the boundary conditions are given by

N =Cm, T = T0, V =U on �D
1

N =Cm, T = T0, V = 0 on �D
2

where T0 = 300K is the ambient temperature and U = 1.5V is the applied voltage. The coefficients
c1 and c2 are given by

c1 = 3

2

l2x
�0�0UT

, c2 = l2x
�0�0UT

In Figure 12, we present the numerical results (temperature and electrostatic potential) for a non-
uniform mesh with 1236 triangles and 666 nodes. As expected, the computed quantities are almost
uniform in one space direction and we can see the hot electron effect in the channel.

In Figure 13, we recall the numerical results (temperature and electrostatic potential) obtained
with the scheme proposed in [20] for the 1-D case.
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Figure 13. 1-D ballistic diode: temperature and electrostatic potential.

4. CONCLUSION

In this paper, we have developed a finite volume method for the drift-diffusion and the energy-
transport systems. The scheme is an extension of the discrete duality finite volume scheme by
Domelevo and Omnès to systems with convection–diffusion equations. One advantage of the
discrete duality finite volume scheme is that it provides full discrete gradients and currents and,
therefore, leads to a natural discretization of the Joule heating term.

We first showed different numerical simulations in the case of the drift-diffusion system. In this
case, we can compare the efficiency of the new scheme with the ‘classical’ scheme proposed by
Chainais-Hillairet and Peng [10]. It appears that the times of computations are smaller with the
new scheme because it allows bigger time step. Furthermore, the new scheme works on almost
all general meshes. Then, we showed that the new scheme provides the expected profiles for the
simulation of the energy-transport system with the data of the 2-D ballistic diode.
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8. Jüngel A. Numerical approximation of a drift-diffusion model for semiconductors with nonlinear diffusion.
Zeitschrift fur Angewandte Mathematik und Mechanik 1995; 75:783–799.
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